(0) Obligation:

Clauses:

max(X, Y, X) :- less(Y, X).
max(X, Y, Y) :- less(X, s(Y)).
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).

Query: max(a,g,a)

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph DT10.

(2) Obligation:

Triples:

lessA(s(X1), s(X2)) :- lessA(X1, X2).
lessB(s(X1), s(X2)) :- lessB(X1, X2).
maxC(s(X1), s(X2), s(X1)) :- lessA(X2, X1).
maxC(s(X1), X2, X2) :- lessB(X1, X2).
maxC(s(X1), X2, X2) :- lessB(X1, X2).

Clauses:

lesscA(0, s(X1)).
lesscA(s(X1), s(X2)) :- lesscA(X1, X2).
lesscB(0, s(X1)).
lesscB(s(X1), s(X2)) :- lesscB(X1, X2).

Afs:

maxC(x1, x2, x3)  =  maxC(x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes:
maxC_in: (f,b,f)
lessA_in: (b,f)
lessB_in: (f,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

MAXC_IN_AGA(s(X1), s(X2), s(X1)) → U3_AGA(X1, X2, lessA_in_ga(X2, X1))
MAXC_IN_AGA(s(X1), s(X2), s(X1)) → LESSA_IN_GA(X2, X1)
LESSA_IN_GA(s(X1), s(X2)) → U1_GA(X1, X2, lessA_in_ga(X1, X2))
LESSA_IN_GA(s(X1), s(X2)) → LESSA_IN_GA(X1, X2)
MAXC_IN_AGA(s(X1), X2, X2) → U4_AGA(X1, X2, lessB_in_ag(X1, X2))
MAXC_IN_AGA(s(X1), X2, X2) → LESSB_IN_AG(X1, X2)
LESSB_IN_AG(s(X1), s(X2)) → U2_AG(X1, X2, lessB_in_ag(X1, X2))
LESSB_IN_AG(s(X1), s(X2)) → LESSB_IN_AG(X1, X2)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessA_in_ga(x1, x2)  =  lessA_in_ga(x1)
lessB_in_ag(x1, x2)  =  lessB_in_ag(x2)
MAXC_IN_AGA(x1, x2, x3)  =  MAXC_IN_AGA(x2)
U3_AGA(x1, x2, x3)  =  U3_AGA(x2, x3)
LESSA_IN_GA(x1, x2)  =  LESSA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
U4_AGA(x1, x2, x3)  =  U4_AGA(x2, x3)
LESSB_IN_AG(x1, x2)  =  LESSB_IN_AG(x2)
U2_AG(x1, x2, x3)  =  U2_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MAXC_IN_AGA(s(X1), s(X2), s(X1)) → U3_AGA(X1, X2, lessA_in_ga(X2, X1))
MAXC_IN_AGA(s(X1), s(X2), s(X1)) → LESSA_IN_GA(X2, X1)
LESSA_IN_GA(s(X1), s(X2)) → U1_GA(X1, X2, lessA_in_ga(X1, X2))
LESSA_IN_GA(s(X1), s(X2)) → LESSA_IN_GA(X1, X2)
MAXC_IN_AGA(s(X1), X2, X2) → U4_AGA(X1, X2, lessB_in_ag(X1, X2))
MAXC_IN_AGA(s(X1), X2, X2) → LESSB_IN_AG(X1, X2)
LESSB_IN_AG(s(X1), s(X2)) → U2_AG(X1, X2, lessB_in_ag(X1, X2))
LESSB_IN_AG(s(X1), s(X2)) → LESSB_IN_AG(X1, X2)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessA_in_ga(x1, x2)  =  lessA_in_ga(x1)
lessB_in_ag(x1, x2)  =  lessB_in_ag(x2)
MAXC_IN_AGA(x1, x2, x3)  =  MAXC_IN_AGA(x2)
U3_AGA(x1, x2, x3)  =  U3_AGA(x2, x3)
LESSA_IN_GA(x1, x2)  =  LESSA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
U4_AGA(x1, x2, x3)  =  U4_AGA(x2, x3)
LESSB_IN_AG(x1, x2)  =  LESSB_IN_AG(x2)
U2_AG(x1, x2, x3)  =  U2_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSB_IN_AG(s(X1), s(X2)) → LESSB_IN_AG(X1, X2)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESSB_IN_AG(x1, x2)  =  LESSB_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(8) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESSB_IN_AG(s(X2)) → LESSB_IN_AG(X2)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(10) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESSB_IN_AG(s(X2)) → LESSB_IN_AG(X2)
    The graph contains the following edges 1 > 1

(11) YES

(12) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSA_IN_GA(s(X1), s(X2)) → LESSA_IN_GA(X1, X2)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESSA_IN_GA(x1, x2)  =  LESSA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(13) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESSA_IN_GA(s(X1)) → LESSA_IN_GA(X1)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(15) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESSA_IN_GA(s(X1)) → LESSA_IN_GA(X1)
    The graph contains the following edges 1 > 1

(16) YES